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Stochastic series expansion method for quantum Ising models with arbitrary interactions
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A quantum Monte Carlo algorithm for the transverse Ising model with arbitrary short- or long-range inter-
actions is presented. The algorithm is based on sampling the diagonal matrix elements of the power-series
expansion of the density matr{stochastic series expansjoand avoids the interaction summations necessary
in conventional methods. In the case of long-range interactions, the scaling of the computation time with the
system sizeN is therefore reduced from? to N In(N). The method is tested on a one-dimensional ferromagnet
in a transverse field, with interactions decaying ag.1/
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I. INTRODUCTION to the transverse Ising model, and shares some features with
a scheme previously used within the continuous-time world-
Monte Carlo studies of classical and quantum many-bodyine algorithm[7]. The way to treat the long-range interac-
systems with long-range interactions are limited by time-tions generalizes the scheme developed for the classical Ising
consuming summations over the interacting particle pairsfode! by Luijten and Blte [1,12]. The integration of these
the number of which grows quadratically with the Systemfeatures_ln the SSE_ formallgm should_open new opportumtles
size. Many important problems in both basic and appIieJor detailed numerl_cal st_udles of a wide range of |mportan_t
sciences can be mapped onto long-range interacting sp odels._Th_e algor_|thm IS hefe tested on a ferromagnenc
models, and hence it would be desirable to develop mor&n@in with interactions decaying asr3/ for which many
efficient numerical techniques for tackling them. For classiTeSults in the classical limitl3-17 are available for com-
cal Ising models, considerable progress has indeed bedfirison. Some analytical studies have also recently been car-

made on algorithms scaling almost linearly with the systen{'ed out on the quant_um.model with the transverse fi2&).
size[1]. In Sec. Il the application of the SSE method to the trans-

In the context of simulated annealir@], where the verse Ising model is described in detail. Local updates as
ground state of a classical systeftypically \;vith compli- well as classical and quantum-cluster updates are discussed.
cated interactionsis obtained through a simulation where Results for the model with 47 interactions are presented in

the temperature is slowly lowered to zero, it has been SugSec. Ill. Section IV concludes with a brief discussion.
gested 3] that a more rapid convergence could be achieved
by using a quantum model, e.g., the Ising model in a trans-
verse(spin-flipping field. Even in an imaginary-time path- ~ The SSE methofl10] is an efficient alternative to world-
integral formulation, the quantum fluctuations can, at least inine quantum Monte Carlg19]. It is based on a generaliza-
some casept], relax the system towards its classical groundtion of the power-series scheme for the Heisenberg ferro-
state more rapidly than thermal fluctuations. This is a strongnagnet that was developed by Handscomb in the early 1960s
motivation for developing more efficient simulation methods[20]. Handscomb’s method was later extended to some other
for quantum Ising models. Another important reason is themodels[21], but the requirement of analytically calculable
continued prominence of the transverse Ising model in theraces of the terms of the expansion inhibited further
theory of magnetism, particularly in the context of quantumprogress. In the SSE method a basis is instead chosen, and
phase transition$5—-7]. Whereas transverse Ising modelsthe traces are also evaluated stochastically, in combination
with short-range interactions have recently been activelyith the sampling of the operator products in the series ex-
studied using quantum Monte Carlo meth¢@s7], numeri-  pansion of exp{ SH). This starting point for quantum Monte

cal work on long-range models has so far been limited taCarlo is as generally applicable as the world-ljimaginary-
special caseB8]. In some of the best experimental realiza- time path-integralapproach. Recently, loop-type cluster up-
tions of the transverse Ising model the interactions are in faaiiates[22] have been developed and generalized for efficient
long ranged9]. SSE simulations of a wide range of mod¢k3,24]. How-

Here a stochastic series expansi@8B [10] algorithm  ever, since the loop updates rely heavily on the presence of
for transverse Ising models with long-range interactions isff-diagonal pair(or multiparticle interactions, they cannot
introduced in which the direct summation over the interactbe directly adapted to the transverse Ising model in the stan-
ing spins is avoided. The computation time scales with thelard basis where the Ising term is diagonal. In the basis
system sizeN as N In(N) times the spatial integral of the where the field is diagonal, loop updates can be easily imple-
absolute value of the interactigwhich normally converges mented[ 23,24 but then sign problemi25] appear when the
asN—o, or diverges only as ItN)]. Both local and cluster- interaction is frustrated. Here the SSE method is applied to
type updates are developed for the transverse Ising modeh arbitrary transverse Ising model, i.e., with no limitations
with arbitrary interactions. The cluster update is a generalion the sign and range of the spin-spin interaction. Several
zation of the classical Swendsen-Wang cluster mefidfl  types of local and cluster-type updates will be described.

II. STOCHASTIC SERIES EXPANSION

1063-651X/2003/6&)/0567019)/$20.00 68 056701-1 ©2003 The American Physical Society



ANDERS W. SANDVIK PHYSICAL REVIEW E68, 056701 (2003

A. Configuration space which converges or grows much slower thdinfor most
Consider the general Hamiltonian for the Ising model in aCaS€s Of interest. . . .
transverse field of strength In order to construct an efficient sampling scheme, it is

useful to cut expansiof#) at some powen=L, sufficiently
, « high for the remaining truncation error to be exponentially
H:iEj: Jijoi Uj_hZ o (D small and completely negligibldL clearly has to be
' ~BNIy(J)]. One can then obtain an expansion for which
where o, is a Pauli spin operatorof=+1) andJj; is the f[he length of'the operator sequence is constant, by consider-
strength of the interaction between spinandj, which can Ing rand-om mseonrys qf.—n unit operato.rsHozo n t_he
be random or uniform and of any sign. The dimensionality isProduct in Eq.(4). Adjusting for the £) possible insertions
arbitrary. Define the operators gives

L
Hoo=1, 2 1
0.0 (23 Z=1 ; é ﬁ”(L—n)!<a||]:[1 Higiola), @)
Hio=h(o{"+0o;), >0, (2b) o . ,
where[i(l),j(1)]=[0,0] is now also an allowed operator in
H; =h, i>0, (20) the sequencs , an.d n den(_)tes the number of nqmp]
' operators. Note again thhl o is not part of the Hamiltonian,
Hi = |3y~ Jj0%0%,  0,j>0, i#]. (2d) but is introduced only for the purpose of constructing a com-

putationally simpler updating scheme where the operator list
has a fixed length.

Up to a constant, the Hamiltonian can be written as ; i
P It is useful to define statelgy(p))=|ci(p), ... ,on(P))

N N obtained by propagatingr)=|a(0)) by the firstp operators
H=-2 2 Hi;. 3@ inS:
i=1i=0
p
The constant$d; ; are introduced for purposes that will be- |a(p)>=r|Hl Higy.imla), 8

come clear below. Note th&t, g is not included as a term in
the Hamiltonian(3) but will be important in the simulation

wherer is a normalization factor. A nonvanishing matrix
scheme.

In the SSE ol to finite-t ; ; element in Eq(7) then corresponds to the periodicity condi-
M n eC | e;]pproacm ] ? lnl.er-ze_m_lpera ure (|q_|uan. UM tion|a(L))=|a(0)), which requires that for each sit¢here
onte Carlo, the partition functiorz.= Tr{exp(~AH)} is is, an even numbe(or zerg of spin-flipping operator$i,0]

written as a pow_er-series exp_ansion, With_ the tra_ce express%i S, . Definition (2d) implies that the Ising operatofs.| ]
as a sum over diagonal matrix elements in a suitably chosen '

: . . may act only on states with= o if J;;<0 (ferromagneti,
basis. Using Eq(3) then gives orgf=—o7if 3;;>0 (antiferrom:agnet&: There are no other
o n n constraints.
z=> > > B all] Hiayiola), (4) An SSE configuration is illustrated in Fig. 1. The vertical
@ n=o0 s, Nn'i=n ' direction in this representation will be referred to as the SSE
propagation directionlt can be related to the imaginary-time
whereS; denotes a sequence mbperator-index pairéhere-  direction in standard path-integral representati@. Note

after referred to as operatgrs that this full configuration, including all the statéa(p))
) _ ) ) explicitly, does not have to be stored in the simulation. A
Sh=[i(1),j(D)], ... Li(n),j(n)], (5 single state and the operator sequence suffice for reproducing
all the states, and such a representation is used in some
with i(1)e{1,... N} and j(I) {0, ... N}. The standard stages of the simulation. For some updates it is convenient to
basis{|a)}={|o7, ... 0%} is used. generate other representations, as will be discussed below.

Because of the constants addedHp; in Eq. (2d), the
eigenvalues of these operators atg;2 and 0. All nonzero
terms in Eq.(4) are therefore positive and can be used as ) ) ) )
relative probabilities in an importance sampling scheme. A The sampling of Eq(7) can be carried out using simple
term is specified by a state’) and an operator sequengg. ~ OPerator substitutions of the types
One can show that the total internal enel@ycluding the . o
constants added t&l) is given by[10,20 E=—(n)/B. [0.0p=[1ilp, 1170, %3
Hence, the size of the operator sequence to be stored in com-

B. Local updates

puter memory scales @NIy(J), where (11,110, 11,00p, [1.01p, 1#0, (9b)
N N where the subscript indicates the positiong=1, ... L) of

Iy(d)= i 2 2 1351 (6) the operator in the sequen&g. The powem is changed by

N< = v +1 in the diagonal update(9a) and is unchanged in the
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lation scheme over world-line methofs9,7], where calcu-
lating the acceptance probability for every update requires a
summation over all the spins interacting with those flipped.
Here an allowed off-diagonal updat@b) leaves the weight
unchanged and can be carried out with probability 1.

If h+0, the above updates of the operator sequence suf-
fice for achieving ergodicity. If there are no Ising operators
acting on a site, o¥(0), ... ,07(L—1) can also be flipped
without changes itg, . This update in principle makes simu-
lations using the present scheme possible alsdfo0, but
in practice unconstrained spins occur frequently only at high
temperatures, whe(m) is small. Other types of “classical”
spin flips—flips of clusters—are also possible, and will be
discussed in Sec. Il C.

The simulation can be started with a random stai@®))
and a sequenc®_containing only 0,0] operators. The trun-
cationL can be chosen arbitrarigsmal); it is adjusted dur-
ing the equilibration part of the simulation, e.g., by requiring
L>(4/3)n after each update. This ensures thamever
reached. during the remainder of the simulation, and hence
that there will be no detectable systematic errors arising from
the truncation of the expansida0]. In the beginning of an
updating cycle, the operator sequenSg and the state
|a(0)) are stored.

The diagonal updatéa) is attempted successively for all
p=1,... L. Inthe course of this process, the spin state is
propagated by flipping sping? as off-diagonal operators
[i,0] are encountered i, so that the statekx(p)) are
generated successively. For @nj]—[0,0] update, i.e., re-
moving a Hamiltonian operator, there are no constraints and
the update should always be accepted with some nonzero
probability. In the case df0,0]—[i,j], i.e., inserting an op-
erator from the Hamiltonian, there are constraints, and the
update may not be allowed for allj. However, initially the

FIG. 1. An SSE configuration for an eight-site one-dimensionalindicesi,j are left undetermined and it is assumed that any
system. Here the truncatidn=49, and the expansion order of the [i,j] would be allowed. Under this assumption, the accep-
term(i.e., the number of Hamiltonian operators present40. The  tance probabilities for the diagonal update are given by
solid and open circles represent the spirf§p)==1, with the

eeseeeeooofoojoooooojococoo]eeesjooococcocoooo00000000|ee|ee
eecvceessccvsesssccsrcsneefooocoo0000OO000OOC|eesesesiee
coooc|eeessfocooocoocopoo00000c00000000ooloooooooofooofooco
..............l.l...................................
eesjeclecsveesseeeeo0c000000COOCOCCO|essesncesssesvesenoe
sejessecvvsesoccoooloocooocooooco00000o0cc000CcOjesseeese

eeeeeefoco0000000OO0C000OC|eeesseeeeeese|co0jc00CC|ecesssenee
®ecseeecsvccssessccesscsvesisrcesseerefojoccc000cjesne

propagation indeyp=0, ... L corresponding to the different eight- Bl Nh+ 22 |J|
spin rows. The thick and thin short horizontal bars represent spin- i g
flip operatorsH;  and constantsl; ; , respectively. The longer lines P([0,01—[i,j])= , (109
represent Ising operatoks; ; (i#]j) acting on the spins at the line L—n+ B3| Nh+ 22 |Jij|>
ends. =
L—n+1

off-diagonal update(9b). In the diagonal update the Ising P(10.0|—i.il)=
- - ([0,01—[i,j])
terms[i,j] and the constantfi,i] are sampled. The con- Nh+23S 13,
stants are used in the off-diagonal update as a means of T
achieving easy insertions and removals of two spin-flipping (10b
operatordi,0]. With the valueh chosen for the constant in . L :

Eq. (20), the operator replacements do not change the weight€ré=ij does not include=j andP>1 should be inter-
of the SSE configuration. However, the off-diagonal upd‘,it‘_:preted as probability 1, as usual. These heat-bath probabili-

also leads to spin flips in the propagated states betygen ties are sir_nply obtained from the ratio of the new and old
prefactors in Eq(7) whenn—n=1:

L—n+1+p

and py; a{(p1), -0 (P2—1)——0o{(pPy), - .., — oi(p2
—1). [p1>p, also has to be considered, leading to flipped L [L=(=D)]!
o4 (py), ..., 0H{L—1)d0), ... ,04p,—1)], which is al- B~ = (11)

lowed if (and only i) no Ising operators acting on siteare

present inS, between position; and p,. Note that this and the ratio between the matrix element 1 of tAeg] op-
constraint is completely local, regardless of the range of theerator and the surhlh+2%;;|J;;| of the nonzero matrix el-
interaction, and that the update requires no knowledge of thements of all[i,j] operators. Staying with the assumption
spin state This is the reason for the advantage of this simu-that any{i, ] is allowed in the updatg0,0]—[i,j], the rela-
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tive probability of an operator with the first indeéxs P(i) proportional to the subsequence length of such pair updates

=Z;M;;, whereM;; is the nonzero matrix element corre- is carried out for each subsequence, after which they are
sponding toH;; (i.e., h for i=] and and 2J;;| elsg. The recombined into a nevg, .

normalized cumulative probabilitie®.(k=1,... N) are The diagonal updatéda at all positions inS, requires
stored in a pregenerated table: ~L In(N)~BNIn(N)Iy(J) operations, where the factor My

is the scaling of the average number of operations needed to
k search the cumulative probability tafdgin the case of long-
2 P(3i) range interactions. Partitionirfg) into subsequences and up-
P.(K)= i=1 (12) dating all of them according to E@Db) requires on the order
¢ N ' of L operations. Hence, the number of operations for a full
> P(i) updating cycle of the degrees of freedom of the systene
=1 Monte Carlo stepscales as3N In(N)Iy(J). This should be
compared to the8N? scaling in world-line methodg7,19,
In order to select the first indeixof the operatofi,j] to be  \where one power oN is due to the summation required to
inserted, a random numberR<1 is generated. The table calculate the weight change when flipping a spin interacting
P. is searchedusing, e.g., a simple binary seaydior the  with N other spins. Here this summation has been circum-
smallestk for which P.(k)=R; the first index of the opera- vented by writing the interactions in the SSE formalism as
tor [i,j] is theni=k. The second index can be chosen in afluctuating constraints that are purely local.
completely analogous way, with the relative probability jffor
giveni, being M;; . For a random system with long-range
interactions, a pregenerated table with elements is hence
needed for storing all the cumulative probabilities for the In the Swendsen-Wang cluster algorithii] for the clas-
second index. For nonrandom interactions in a translationallgical Ising model, i.e., witth=0 and a uniform nearest-
invariant system, the first index can be selected at randomeighbor interaction of strength auxiliary bond variables
with equal probabilities without searching a table, and theb;; are introduced in order to construct clusters of spins that
size of the second table is reduced\toFor a short-range or can be flipped independently of each other. Given a spin
truncated interaction the table size is smaller, correspondingonfiguration, and with initially all bond variables;=0,
to the number of spins within the range of the interaction;for every interacting spin pair for whichyo;=—J/|J] (i.e.,
clearly, the whole selection process should then be reducetie orientation energetically favorethe bond variable is set,
to a single step for obtaining botrandj (e.g., selecting one b;;=1, with probability P= 1—e~2M8 When all bonds
out of a total number-N of operators and reading the cor- have been visited, clusters of spins connectedbly= 1
responding,j from a tablg. The two-step procedure is ad- bonds are formed, and each of these clusters is flipped with
vantageous for nonrandom long-range interactions, where grobability 1/2. Single spins not connected to any=1
allows for the reduction of the size of the probability table bond are single-spin clusters. After the clusters have been
from N? to N. For random models, the storage requirement iflipped, all the bond variables are again set to zero and the
alwaysN?, and it may then again be better to combine theprocess is repeated. This scheme can in fact be constructed
first and second index searches, using a singlelsfzeable  using the SSE formalism, as an alternative to the Fortuin-
for all the cumulative probabilities dfi,j]. For short-range Kasteleyn mapping27], on which the Swendsen-Wang al-
random interactions the size of the tablé\Nisimes the num-  gorithm is based.
ber of spins within the interaction range. The relation to the Swendsen-Wang algorithm is shown as
The operatofi,j] generated as above may or may not befollows, by applying the SSE method to the classical Ising
allowed in the current spin configuratide(p)). If o7(p) model, now again considering a general form of the interac-
andojz(p) indeed are in an allowed stafe, ] is inserted at tion J;; and with the bond operatdt;; =|Jj; | —Jijaizojz asin
position p. Otherwise, the operatd0,0] is left unchanged. Ed.(2d). Since all operatorsl;; commute, the operatar A1
This accept/reject step leads to the correct probabilities focan be written as a product of operatce@;“ii=1+,8Hij
selecting among all the allowed diagonal operaforg]. +---. The uniqueness of the power-series expansion then
The off-diagonal updatéb) can be efficiently carried out implies that in the SSE, whees £ is expanded directly, the
if S is first partitioned into separate subsequences for eagbrobability of having one or more operatdrs; on a bond
site i. Subsequencé contains only spin-flipping operators i,j when oioj=—Jij/|Jij| is 1—e 2Nil# je., exactly the
[i,0] and constantgi,i]. Their positions inS_ are also probability of having the bond variablé;=1 in the
stored, to be used for recombining the subsequences after tissvendsen-Wang scheme. In a configuratioe;=J;; /|Jj;]|
update. The constraints on modifications at siteposed by  there can be no operators on the bond in the SSE, and the
Ising operatordi,j] or [j,i] (for any j) can be stored as Swendsen-Wanp;;=1 probability is also zero per construc-
flags indicating the presence of one or several of these ofion. One can hence make the connection that one or more
erators between neighboring subsequence operators. Updaperators acting on a spin pair in the SSE scheme correspond
ing a subsequence amounts to selecting two nonconstraingd a filled bond b;;=1) in the Swendsen-Wang algorithm.
neighboring operators at random from the subsequence, arithe definition of a cluster is then exactly the same in the two
carrying out substitutioii9b) if the two operators are identi- algorithms. Clearly, such a cluster in the SSE can also always
cal. If they are different, they can be permuted. A numbelbe flipped, since the Ising operators only impose constraints

C. Classical cluster update
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on the relative orientations of connected spins, which is
maintained when the cluster is flipped. Since the weight does
not change, the flip should be done with probability 1/2. The
scheme is hence identical to the Swendsen-Wang algorithm,

AL/

e
\ s JY

except that the filled bonds;; =1 in SSE are generated in a . . “.‘" ?" ’, 7
different way, using the diagonal updd@s). Note that for a : i%"a“wﬁ'at
classical model, all the propagated SSE stégsre identi- "lév“‘ I“‘\‘

cal, i.e.,of(p)=07(0) for allp=0, ... L—1, and hence no I A\yr“ . )

state propagations have to be considered as the diagonal up-
date is carried out.

It is interesting to note that the SSE scheme for the clas-
sical Ising model should in fact be more efficient than the
standard Swendsen-Wang algorithm at high temperatures.
This is because the number of operators in the SSE operator
list scales a&(T)/T, whereE(T) is the total internal energy
at temperaturd (E~N) and for largeT the construction of

the clusters based on the operator list should then be faster 1 ; 1 ? ; 1 2 S 2 é : 7 ; 2 Z :13 ] ﬁ b
than visiting all the bonds, as is done in the Swendsen-Wang -161-1m-2-4-72-312--
algorithm. However, in practice the interesting physics oc- 1 ] f g ] 1 1 1 ﬁqg 3 2 1 ; ) ; 1 ) § 2
curs when the number of SSE operators per interacting spin --+n9114-9q3332331 -3
pair is of the order of 1 or larger, and then there are no nd244411-9--3--3-"--
advantages of the SSE classical cluster algorithm relative to DRSNS A I S
Swendsen-Wang. 2¢52--dj 319 ---122 . .-

The classical SSE cluster update can also be used in the 5 (2oopartoreosl-t12e
presence of the transverse fieli0). The clusters are de- g----1f1-122333-2ia-
fined in terms of bonds signifying the presence of one or ke-5-:--1-.-2-23-22-1a
more Ising operator, as above, without regard for the single- " f{ 1’ 111 8 8 ; 8 2 83 ? S § S 4 2
spin-flipping operator$; ; and constantsl; ;. These opera- I BRI pe-1s22t2229
tors can be neglected because when a cluster is flipped, all todotle to izt
spinso{ belonging to the cluster are implicitly flipped in all r -1 ---11-541+--2h-1-

H z z

propagated stat_es{S), Le., oi(p)——oi(p) . for _all P FIG. 2. Upper panel: Interaction bonds in a configuration for a
=0, ... L—1(thisis the reason for the term “classical clus- 2D system with long-range interactions. Lower panel: The clusters

ter” even whenh>0) and hence all operations with the ¢onstructed from the bonds. Sites with equal symbols belong to the
single-spin operators remain valid and produce the same fagame cluster. Dots indicate spins not acted on by any Ising operator
tors in the weight before and after the cluster flips. Noteand constitute single-spin clusters.
again that only the first state, i.er;(0),i=1, ... N, has to
be stored when constructing the classical clusters. D. Quantum-cluster update
In the case of long-range interactions, a cluster can consist The purpose of the quantum-cluster update is to effect
of several intertwined pieces on the lattice, as illustrated foflips of spinsa?(p) only in a limited number of propagated
a two-dimensional case in Fig. 2. Regardless of the range aftatesp, in different states for different sites In other
the interaction, the construction of the clusters, given a SSkords, these clusters will be finite and irregularly shaped
operator list, can be easily carried out using a number oboth in the space and SSE propagationaginary-time di-
operations scaling as the number of operators in the list. rection. In the process, operator substitutidds;< H; o
Since the classical SSE cluster update is equivalent to th@onstant to spin flip, and vice vepswill also be accom-
Swendsen-Wang algorithm in the classical limit and onlyplished. This update hence replaces the local off-diagonal
takes the Ising terms into account also in the quantum case, ifjpdate(9b).
cannot be expected to be efficient much beyond the classical To discuss the quantum-cluster update, it is useful to in-
limit h=0. For a nonrandom system that undergoes a phaseoduce the notion ofertices[23,24]. Looking at the graphi-
transition atT.(0) whenh=0, the critical temperature is cal representation of a configuration in Fig. 1, it can be noted
reduced by the transverse fiel@l,(h)<T.(0). Hence, the that the vertical “lines” of same spins between two operators
classical clusters will percolate for>T_. and this update acting on a given site constitute redundant information. The
will not be efficient close tdl',. The primary reason to in- full configuration can be represented by a list of positions
troduce the classical cluster update here was to demonstraten the latticg of the operators, and the spin states one or
the relationship between SSE and the Swendsen-Wang algtwo sites for the model considered hebefore and after the
rithm. In the case of long-range interactions, the scheme besperators act. These relevant spins are cddlgdof the two-
comes very similar to the Luijten-Ble algorithm[1], again  spin verticegcorresponding to constant and spin-flip opera-
just differing in the way the bonds are generated. torsg) or four-spin verticegcorresponding to Ising bond op-
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(a) o ° ° g both spins are flippe¢in the absence of an external field in
© © * * the z direction, which would necessitate a modified ap-
o ° ® o proach, and the matrix elements for the constant and spin-
® ° ° o flip operators are both equal to

The construction of a single cluster, which is flipped with
probability 1, is a quantum-mechanical analog of the classi-
cal Wolff algorithm [28]; in the absence of the transverse

FIG. 3. All the possible four-leg and two-leg verticéa) Fer-  field the clusters are identical to those of the Wolff algorithm.
romagnetic Ising verticegp) antiferromagnetic Ising verticesg) Note, however, that there is a difference when constructing
constant vertices, an@) spin-flip vertices. more than one cluster: The number of operators in the SSE

operator list and their positions on the lattice do not change
erator$. All possible vertices for the transverse Ising modelin the quantum-cluster update. The clusters are therefore
are shown in Fig. 3. Note that only those Ising vertices thatompletely deterministic once the operator list is given.
are compatible with the sign of the interaction between aHence, when constructing several clusters using the same
given pair of spins are allowed for those spins; again, this iSSE operator list, it is quite likely that the same cluster is
due to the choice of constant in the bond operé2dy. Inthe  constructed and flipped multiple times. This is clearly not
computer, the vertices are linked to each other by pointers, sdesirable. However, one can also construct all clusters, as in
that from a given vertex leg one can reach the next or prethe Swendsen-Wang scheme, and only flip them with prob-
vious vertex that has a leg on the same éite.,, there are ability 1/2. This is done by always starting a new cluster
links that replace the segments of vertical lines of same spinsom a vertex leg which has not yet been visited. Every ver-
in Fig. 1). A detailed discussion of the practical implementa-tex leg belongs uniquely to one cluster, and clearly the num-
tion of a linked vertex list has been given in RE24]. ber of operations required to complete this update then scales

To construct and flip a quantum cluster, one of the legs oksL, i.e., typically asgN.
one of then vertices is picked at random, and the corre- A natural definition of a Monte Carlo step including the
sponding spin is flipped. Depending on the type of the verquantum-cluster update is a full sweep of diagonal updates,
tex, different actions are taken, examples of which are giveffollowed by the construction of the linked list of vertices, in
in Fig. 4. The arrow pointing into the vertex indicates thewhich all clusters are constructed and flipped with probabil-
entrance legIn the case of an Ising vertex, all the four spinsity 1/2. After that, the updated vertex list is mapped back into
are flipped and the cluster building process branches ou statg«(0)) and an operator sequengg. Free spins, i.e.,
from all the legs, as indicated by the arrows pointing outthose that are not acted on by any operators, can again be
from the vertex. Using the pointers of the linked vertex list,considered as single-spin clusters and should also be flipped
the arrows point to legs of other vertices; these become newith probability 1/2. No local off-diagonal updatégb) are
entrance legs which are put on a stack and subsequently praeeded.
cessed one by one. If the entrance leg is on a constant or Since the quantum-cluster update explicitly includes the
spin-flip vertex, only the entrance spin is flipped. The vertexguantum-mechanical features of the configuratires, the
type then also changes, in terms of operators ftég to  presence of spin-flip operatorst can be expected to work
H; ;, and vice versa. In these cases there is no branching-outell also close to a quantum phase transitidp=0) driven
and no new legs are put on the stack, i.e., this particulaby varyingh. There are no problems in principle in taking
branch of the cluster terminates. If a link points to a spin thathe T—0 limit, although, as in all finiteF methods, very
has already been flippgdle., two arrows point toward each large inverse temperaturgd have to be used to converge
othen, that leg should not be used again as an entrance andligrge lattices to the ground statespecially in the case of
hence not put on the stack. Therefore, each vertex leg can handomized interaction9]).
visited at most oncéeach spin can be flipped at most opce
and the cluster is completed when there are no more entrance ;. ONE-DIMENSIONAL  (1D) INVERSE-SQUARE
legs on the stack. The reason that the cluster can always be FERROMAGNET
flipped is again that the SSE weight is not affected; the ma-
trix element of the Ising bond operator is not affected when As a nontrivial demonstration of the method, a ferromag-

netic chain with interactions decaying as?lis considered

© = 3+ @ =

elo

+ + next. The interaction is summed over glj in Eq. (1), i.e.,
o o ° ° each pair is counted twice. Periodic boundary conditions are
@ g o T e ° used.J;; includes both distances in the periodic system, i.e.,
t T {
Ji=J ) ! + ! (13
b 3 = ¢ © % > < 22 (N=li-j)?)
T T whereJ sets the overall energy scale.
FIG. 4. Examples of vertex processéa) reversal of a ferro- The classical 17 Ising chain has been the subject of nu-
magnetic Ising vertex(b) constant to spin flip, anc) spin flip to ~ merous studie$13—-17. The long-range interaction allows
constant. for a finite-T phase transition even in one dimension. The
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transition is of an unusual kind, with the correlation length 1.0
exponentv=c, and a discontinuous jump in the magnetiza-
tion atT.. It can be thought of as a one-dimensional analog 03 L
of the Kosterlitz-Thoules&KT) transition, with the topologi- )
cal excitations being kink solitonsl4]. The model is also
important because it can be mapped onto the Kondo problem 06
[13]. 5

For smallh/J, one can expect a behavior similar to the 04

classical case, i.e., a finifephase transition to a ferromag-
netic state. Foh—« the system becomes disordered, and
there should therefore be a finite. for which the system 02 -
undergoes a quantum phase transitioa., T,=0). Forh
<h,, T.>0 and one would then expect the same universal-

ity class as in the classical case, since the quantum fluctua- 0%0 10 20 30 10 50
tions become irrelevant &t [18]. Here only a single field 0.92 =<
strengthh/J=0.5 is considered; the simulations show that \
T.>0 in this case. A more systematic study of thdepen- 0.90 -
dence and the quantum phase transition are left for future I
studies. 0.88 -

The model is invariant with respect to flipping all spins, 0
which means that for any finite system the average magneti- o 0.86 r
zation vanishes. The squared magnetization, = 0.54

1 2 [
M2:<<NZ O_IZ) >’ (14) 0.82
I

ogol ®

is therefore calculated. Results foF? with statistical errors »
in the fifth decimal place can easily be obtained for systems o.7§ 0 1_55 1.;10 1.'45 1.'50
with several hundred sping@nd there are no problems in ™
going to considerably larger systemBor small systems the
results are in perfect agreement with exact diagonalization FIG. 5. (a) Magnetization squared vs temperature for system
data. sizesN=16 (dotted curvg 32, 64, 128, 256, and 51gsolid

A “tempering” scheme, whergs is considered as an ad- curves. The statistical errors are smaller than the width of the
ditional discretized dimension of the configuration spacecurves.(b) The same quantity on a more detailed scale in the inter-
[30], was also implemented in the simulations. Transitionssection region. The points with barely visible error bars are the
satisfying detailed balance are carried out between neighboﬁjmulation results. The curves are third-order polynomial fits.
ing B values. This way, results can be obtained on a dense
temperature grid with much less effort than by several fixedcan be compared witif.(h=0)~1.53] for the classical
3 simulations. A temperature spaciag/J=0.01-0.02 was model [17]. A reduction of T, is expected on account of
used. quantum fluctuations fdn>0. The quite small reduction for

Figure 5a) shows results for systems withh up to 512.  h/J=0.5 is consistent with th& —0 magnetization being
At high temperaturesM? decreases with increasird, as  only slightly reduced from the classical vali#(0)=1.
expected, and there is a slight increase Wtht low T. The The reason for the different form of the finite-size scaling
curves intersect at/J~1.4. A discontinuous magnetization for h>0 should be clarified. Recently, a related model with a
jump at T in the thermodynamic limit implies thaii? long-range interaction in the imaginary-time directi@lssi-
should become size independentTatfor sufficiently large pative transverse Ising chaihas been studig®2,31. Some
N. A notable difference between the finite-size behavior ofresults for the quantum phase transition were obtained,
M(T) seen in Fig. 5 and the magnetization curves for thewhich should also be relevant whéin—0 in the model
classical system is that in the latter case the curves do naonsidered heréby switching the roles of the spatial and
intersect, but the infinite-size valudl(T,) is approached imaginary-time dimensionsThe crossings observed in Fig.
with a logarithmic correctio17]. Figure %b) shows in 5 could reflect a nonasymptotic behavior related to the quan-
greater detail the behavior in the region where the curvetum phase transition, i.e., for some largethe curves would
intersect. The point of intersection moves slowly towardscease to cross as the classioal 0 scaling[17] sets in. The
higher T as N increases, and larged would be needed to crossing behavior would, if this is the true asymptotic behav-
determine whether a fixed crossing point is reached asymper, imply that the KT transition of thé=0 model is modi-
totically. Under the assumption that the behavior for the largfied whenh>0. A modified scaling would normally not be
est systems reflects the asymptotic behavior, it would bexpected 18], but considering that the classical model with
natural to associate the crossing point with the critical teminteractions decaying asrl/has continuously varying expo-
perature, and then based on the d&tdJ=1.42+0.01. This nents for 3/2Z «<2 and a KT transition only exactly at
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=2 [13-17, the system could potentially be very sensitive always local and can be generated in the diagonal update
to the modified space-time interactions affected by the transhased purely on local decisions.
verse field. The transverse Ising simulation algorithm has here been
tested on a one-dimensional model with long-range interac-
IV. DISCUSSION tions decaying as 7. The program requires almost no
o ) ) modifications for higher-dimensional systems, and random
An efficient approach to long-range interacting quantuMinteractions are also very easy to implement. The high accu-
models has been developed here within the framework ofacy of these simulations demonstrates that the algorithm
transverse Ising models. It is important to note that the techindeed is very efficient. The computer resources used for this
nique can also be generalized to other types of systems, Wilfjork were quite modest; on the order of 200 CPU hours on
the usual caveat of sign problerfi5]. What is particular 5 SGI Origin2000. The scaling of the CPU time is close to
about the Ising interaction is that it can be written so that ginear in N for the 142 interaction, for which the interaction
spin-spin term either gives zero or a constant when acting o8ym () converges rapidly. Only the local updates discussed
an arbitrary basis state. This is what is needed in order t§, sec. |IB were used in these simulations. The cluster up-
reduce the interactions to local constraints in the SSE formalystes have been tested as well and improve the performance.
ism. However, the algorithm can easily be modified to case§ne quantum-cluster update should be particularly useful for
where the diagonal interaction can take several nonzero vaky,dying the quantum phase transition, where there will be a
ues. The first modification is in the diagonal update. For the)gaq distribution of the sizes of the clusters constructed in
Ising model, the probability of selecting a given boid) is  this update.
given by a matrix element corresponding to the spin pair The initial study of 1¥?> model presented here was prima-
being in a configuration energetically favored by the interacyily intended as a demonstration of the algorithm. The results
tion. If_ the spins are in a _nonfavor_ed ConflgUFatICUWe_- suggest the possibility of differences between the model with
sponding here to a vanishing matrix elemethie update is  5nq without a transverse field and motivate further large-
simply rejected. In the general case, the probability to use iRcale studies.
this update should correspond to the largest diagonal matrix ruture studies will also address how well the method
element on a given bond, and if the actual configuration coryorks in practice for a variety of other systems that are more
responds to a smaller matrix element the update should bg,g|lenging because of frustrated interactions, long-range
accepted only with a probability reflecting this smaller valuefstrated interactions, or even randomly frustrated long-
(i.e., the ratio between the actual value and the largest matriggnge interactions. For short-range interactions, it would also
element. The quantum-cluster update can be modified byhe interesting to see how the SSE quantum-cluster method
using ideas developed within the “directed-loop” algorithm ¢onstructed here compares to the transverse Ising cluster

[24]. For example, there could be four-particle vertex pro-method previously developed for continuous-time world-line
cesses where the whole vertex is not necessarily reversed ggnylations[7].

in Fig. 4(@). The process could instead either go straight

through the vertexmodifying the vertex only at the entrance ACKNOWLEDGMENTS
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