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Stochastic series expansion method for quantum Ising models with arbitrary interactions

Anders W. Sandvik
Department of Physics, Åbo Akademi University, Porthansgatan 3, FIN-20500 Turku, Finland

~Received 27 March 2003; published 11 November 2003!

A quantum Monte Carlo algorithm for the transverse Ising model with arbitrary short- or long-range inter-
actions is presented. The algorithm is based on sampling the diagonal matrix elements of the power-series
expansion of the density matrix~stochastic series expansion!, and avoids the interaction summations necessary
in conventional methods. In the case of long-range interactions, the scaling of the computation time with the
system sizeN is therefore reduced fromN2 to N ln(N). The method is tested on a one-dimensional ferromagnet
in a transverse field, with interactions decaying as 1/r 2.
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I. INTRODUCTION

Monte Carlo studies of classical and quantum many-b
systems with long-range interactions are limited by tim
consuming summations over the interacting particle pa
the number of which grows quadratically with the syste
size. Many important problems in both basic and appl
sciences can be mapped onto long-range interacting
models, and hence it would be desirable to develop m
efficient numerical techniques for tackling them. For clas
cal Ising models, considerable progress has indeed b
made on algorithms scaling almost linearly with the syst
size @1#.

In the context of simulated annealing@2#, where the
ground state of a classical system~typically with compli-
cated interactions! is obtained through a simulation whe
the temperature is slowly lowered to zero, it has been s
gested@3# that a more rapid convergence could be achie
by using a quantum model, e.g., the Ising model in a tra
verse~spin-flipping! field. Even in an imaginary-time path
integral formulation, the quantum fluctuations can, at leas
some cases@4#, relax the system towards its classical grou
state more rapidly than thermal fluctuations. This is a stro
motivation for developing more efficient simulation metho
for quantum Ising models. Another important reason is
continued prominence of the transverse Ising model in
theory of magnetism, particularly in the context of quantu
phase transitions@5–7#. Whereas transverse Ising mode
with short-range interactions have recently been activ
studied using quantum Monte Carlo methods@6,7#, numeri-
cal work on long-range models has so far been limited
special cases@8#. In some of the best experimental realiz
tions of the transverse Ising model the interactions are in
long ranged@9#.

Here a stochastic series expansion~SSE! @10# algorithm
for transverse Ising models with long-range interactions
introduced in which the direct summation over the intera
ing spins is avoided. The computation time scales with
system sizeN as N ln(N) times the spatial integral of th
absolute value of the interaction@which normally converges
asN→`, or diverges only as ln(N)]. Both local and cluster-
type updates are developed for the transverse Ising m
with arbitrary interactions. The cluster update is a gener
zation of the classical Swendsen-Wang cluster method@11#
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to the transverse Ising model, and shares some features
a scheme previously used within the continuous-time wo
line algorithm @7#. The way to treat the long-range intera
tions generalizes the scheme developed for the classical I
model by Luijten and Blo¨te @1,12#. The integration of these
features in the SSE formalism should open new opportuni
for detailed numerical studies of a wide range of importa
models. The algorithm is here tested on a ferromagn
chain with interactions decaying as 1/r 2, for which many
results in the classical limit@13–17# are available for com-
parison. Some analytical studies have also recently been
ried out on the quantum model with the transverse field@18#.

In Sec. II the application of the SSE method to the tra
verse Ising model is described in detail. Local updates
well as classical and quantum-cluster updates are discus
Results for the model with 1/r 2 interactions are presented i
Sec. III. Section IV concludes with a brief discussion.

II. STOCHASTIC SERIES EXPANSION

The SSE method@10# is an efficient alternative to world
line quantum Monte Carlo@19#. It is based on a generaliza
tion of the power-series scheme for the Heisenberg fe
magnet that was developed by Handscomb in the early 19
@20#. Handscomb’s method was later extended to some o
models@21#, but the requirement of analytically calculab
traces of the terms of the expansion inhibited furth
progress. In the SSE method a basis is instead chosen
the traces are also evaluated stochastically, in combina
with the sampling of the operator products in the series
pansion of exp(2bH). This starting point for quantum Monte
Carlo is as generally applicable as the world-line~imaginary-
time path-integral! approach. Recently, loop-type cluster u
dates@22# have been developed and generalized for effici
SSE simulations of a wide range of models@23,24#. How-
ever, since the loop updates rely heavily on the presenc
off-diagonal pair~or multiparticle! interactions, they canno
be directly adapted to the transverse Ising model in the s
dard basis where the Ising term is diagonal. In the ba
where the field is diagonal, loop updates can be easily im
mented@23,24# but then sign problems@25# appear when the
interaction is frustrated. Here the SSE method is applied
an arbitrary transverse Ising model, i.e., with no limitatio
on the sign and range of the spin-spin interaction. Sev
types of local and cluster-type updates will be described.
©2003 The American Physical Society01-1
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ANDERS W. SANDVIK PHYSICAL REVIEW E68, 056701 ~2003!
A. Configuration space

Consider the general Hamiltonian for the Ising model in
transverse field of strengthh,

H5(
i , j

Ji j s i
zs j

z2h(
i

s i
x , ~1!

wheresi is a Pauli spin operator (s i
z561) andJi j is the

strength of the interaction between spinsi and j, which can
be random or uniform and of any sign. The dimensionality
arbitrary. Define the operators

H0,051, ~2a!

Hi ,05h~s i
11s i

2!, i .0, ~2b!

Hi ,i5h, i .0, ~2c!

Hi , j5uJi j u2Ji j s i
zs j

z , i , j .0, iÞ j . ~2d!

Up to a constant, the Hamiltonian can be written as

H52(
i 51

N

(
j 50

N

Hi , j . ~3!

The constantsHi ,i are introduced for purposes that will be
come clear below. Note thatH0,0 is not included as a term in
the Hamiltonian~3! but will be important in the simulation
scheme.

In the SSE approach@10# to finite-temperature quantum
Monte Carlo, the partition functionZ5Tr$exp(2bH)% is
written as a power-series expansion, with the trace expre
as a sum over diagonal matrix elements in a suitably cho
basis. Using Eq.~3! then gives

Z5(
a

(
n50

`

(
Sn

bn

n!
^au)

l 51

n

Hi ( l ), j ( l )ua&, ~4!

whereSn denotes a sequence ofn operator-index pairs~here-
after referred to as operators!:

Sn5@ i ~1!, j ~1!#, . . . ,@ i ~n!, j ~n!#, ~5!

with i ( l )P$1, . . . ,N% and j ( l )P$0, . . . ,N%. The standard
basis$ua&%5$us1

z , . . . ,sN
z &% is used.

Because of the constants added toHi , j in Eq. ~2d!, the
eigenvalues of these operators are 2uJi j u and 0. All nonzero
terms in Eq.~4! are therefore positive and can be used
relative probabilities in an importance sampling scheme
term is specified by a stateua& and an operator sequenceSn .
One can show that the total internal energy~including the
constants added toH) is given by @10,20# E52^n&/b.
Hence, the size of the operator sequence to be stored in c
puter memory scales asbNIN(J), where

I N~J!5
1

N (
i 51

N

(
j 51

N

uJi j u, ~6!
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which converges or grows much slower thanN for most
cases of interest.

In order to construct an efficient sampling scheme, it
useful to cut expansion~4! at some powern5L, sufficiently
high for the remaining truncation error to be exponentia
small and completely negligible@L clearly has to be
;bNIN(J)]. One can then obtain an expansion for whi
the length of the operator sequence is constant, by cons
ing random insertions ofL2n unit operatorsH0,0 in the
product in Eq.~4!. Adjusting for the (n

L) possible insertions
gives

Z5
1

L! (
a

(
SL

bn~L2n!! ^au)
l 51

L

Hi ( l ), j ( l )ua&, ~7!

where@ i ( l ), j ( l )#5@0,0# is now also an allowed operator i
the sequenceSL , and n denotes the number of non-@0,0#
operators. Note again thatH0,0 is not part of the Hamiltonian,
but is introduced only for the purpose of constructing a co
putationally simpler updating scheme where the operator
has a fixed length.

It is useful to define statesua(p)&5us1
z(p), . . . ,sN

z (p)&
obtained by propagatingua&5ua(0)& by the firstp operators
in SL :

ua~p!&5r)
l 51

p

Hi ( l ), j ( l )ua&, ~8!

where r is a normalization factor. A nonvanishing matr
element in Eq.~7! then corresponds to the periodicity cond
tion ua(L)&5ua(0)&, which requires that for each sitei there
is an even number~or zero! of spin-flipping operators@ i ,0#
in SL . Definition ~2d! implies that the Ising operators@ i , j #
may act only on states withs i

z5s j
z if Ji j ,0 ~ferromagnetic!,

or s i
z52s j

z if Ji j .0 ~antiferromagnetic!. There are no other
constraints.

An SSE configuration is illustrated in Fig. 1. The vertic
direction in this representation will be referred to as the S
propagation direction. It can be related to the imaginary-tim
direction in standard path-integral representations@26#. Note
that this full configuration, including all the statesua(p)&
explicitly, does not have to be stored in the simulation.
single state and the operator sequence suffice for reprodu
all the states, and such a representation is used in s
stages of the simulation. For some updates it is convenien
generate other representations, as will be discussed belo

B. Local updates

The sampling of Eq.~7! can be carried out using simpl
operator substitutions of the types

@0,0#p↔@ i , j #p , i , j Þ0, ~9a!

@ i ,i #p1
@ i ,i #p2

↔@ i ,0#p1
@ i ,0#p2

, iÞ0, ~9b!

where the subscriptp indicates the position (p51, . . . ,L) of
the operator in the sequenceSL . The powern is changed by
61 in the diagonal update~9a! and is unchanged in the
1-2
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STOCHASTIC SERIES EXPANSION METHOD FOR . . . PHYSICAL REVIEW E68, 056701 ~2003!
off-diagonal update~9b!. In the diagonal update the Isin
terms @ i , j # and the constants@ i ,i # are sampled. The con
stants are used in the off-diagonal update as a mean
achieving easy insertions and removals of two spin-flipp
operators@ i ,0#. With the valueh chosen for the constant i
Eq. ~2c!, the operator replacements do not change the we
of the SSE configuration. However, the off-diagonal upd
also leads to spin flips in the propagated states betweep1

and p2 ; s i
z(p1), . . . ,s i

z(p221)→2s i
z(p1), . . . ,2s i

z(p2

21). @p1.p2 also has to be considered, leading to flipp
s i

z(p1), . . . ,s i
z(L21)s i

z(0), . . . ,s i
z(p221)], which is al-

lowed if ~and only if! no Ising operators acting on sitei are
present inSL between positionsp1 and p2. Note that this
constraint is completely local, regardless of the range of
interaction, and that the update requires no knowledge of
spin state. This is the reason for the advantage of this sim

FIG. 1. An SSE configuration for an eight-site one-dimensio
system. Here the truncationL549, and the expansion order of th
term~i.e., the number of Hamiltonian operators present! n540. The
solid and open circles represent the spinss i

z(p)561, with the
propagation indexp50, . . . ,L corresponding to the different eigh
spin rows. The thick and thin short horizontal bars represent s
flip operatorsHi ,0 and constantsHi ,i , respectively. The longer line
represent Ising operatorsHi , j ( iÞ j ) acting on the spins at the lin
ends.
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lation scheme over world-line methods@19,7#, where calcu-
lating the acceptance probability for every update require
summation over all the spins interacting with those flippe
Here an allowed off-diagonal update~9b! leaves the weight
unchanged and can be carried out with probability 1.

If hÞ0, the above updates of the operator sequence
fice for achieving ergodicity. If there are no Ising operato
acting on a sitei, s i

z(0), . . . ,s i
z(L21) can also be flipped

without changes inSL . This update in principle makes simu
lations using the present scheme possible also forh50, but
in practice unconstrained spins occur frequently only at h
temperatures, when̂n& is small. Other types of ‘‘classical’
spin flips—flips of clusters—are also possible, and will
discussed in Sec. II C.

The simulation can be started with a random stateua(0)&
and a sequenceSL containing only@0,0# operators. The trun-
cationL can be chosen arbitrarily~small!; it is adjusted dur-
ing the equilibration part of the simulation, e.g., by requiri
L.(4/3)n after each update. This ensures thann never
reachesL during the remainder of the simulation, and hen
that there will be no detectable systematic errors arising fr
the truncation of the expansion@10#. In the beginning of an
updating cycle, the operator sequenceSL and the state
ua(0)& are stored.

The diagonal update~9a! is attempted successively for a
p51, . . . ,L. In the course of this process, the spin state
propagated by flipping spinss i

z as off-diagonal operators
@ i ,0# are encountered inSL , so that the statesua(p)& are
generated successively. For an@ i , j #→@0,0# update, i.e., re-
moving a Hamiltonian operator, there are no constraints
the update should always be accepted with some non
probability. In the case of@0,0#→@ i , j #, i.e., inserting an op-
erator from the Hamiltonian, there are constraints, and
update may not be allowed for alli , j . However, initially the
indices i , j are left undetermined and it is assumed that a
@ i , j # would be allowed. Under this assumption, the acc
tance probabilities for the diagonal update are given by

P~@0,0#→@ i , j # !5

bS Nh12(
i j

uJi j u D
L2n1bS Nh12(

i j
uJi j u D , ~10a!

P~@0,0#→@ i , j # !5
L2n11

L2n111bS Nh12(
i j

uJi j u D ,

~10b!

where( i j does not includei 5 j and P.1 should be inter-
preted as probability 1, as usual. These heat-bath proba
ties are simply obtained from the ratio of the new and o
prefactors in Eq.~7! whenn→n61:

b61
@L2~n61!#!

~L2n!!
, ~11!

and the ratio between the matrix element 1 of the@0,0# op-
erator and the sumNh12( i j uJi j u of the nonzero matrix el-
ements of all@ i , j # operators. Staying with the assumptio
that any@ i , j # is allowed in the update@0,0#→@ i , j #, the rela-

l

n-
1-3
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ANDERS W. SANDVIK PHYSICAL REVIEW E68, 056701 ~2003!
tive probability of an operator with the first indexi is P( i )
5( jM i j , whereMi j is the nonzero matrix element corre
sponding toHi j ~i.e., h for i 5 j and and 2uJi j u else!. The
normalized cumulative probabilitiesPc(k51, . . . ,N) are
stored in a pregenerated table:

Pc~k!5

(
i 51

k

P~ i !

(
i 51

N

P~ i !

. ~12!

In order to select the first indexi of the operator@ i , j # to be
inserted, a random number 0<R,1 is generated. The tabl
Pc is searched~using, e.g., a simple binary search! for the
smallestk for which Pc(k)>R; the first index of the opera
tor @ i , j # is then i 5k. The second index can be chosen in
completely analogous way, with the relative probability forj,
given i, being Mi j . For a random system with long-rang
interactions, a pregenerated table withN2 elements is hence
needed for storing all the cumulative probabilities for t
second index. For nonrandom interactions in a translation
invariant system, the first index can be selected at rand
with equal probabilities without searching a table, and
size of the second table is reduced toN. For a short-range o
truncated interaction the table size is smaller, correspond
to the number of spins within the range of the interactio
clearly, the whole selection process should then be redu
to a single step for obtaining bothi and j ~e.g., selecting one
out of a total number;N of operators and reading the co
respondingi , j from a table!. The two-step procedure is ad
vantageous for nonrandom long-range interactions, whe
allows for the reduction of the size of the probability tab
from N2 to N. For random models, the storage requiremen
alwaysN2, and it may then again be better to combine t
first and second index searches, using a single size-N2 table
for all the cumulative probabilities of@ i , j #. For short-range
random interactions the size of the table isN times the num-
ber of spins within the interaction range.

The operator@ i , j # generated as above may or may not
allowed in the current spin configurationua(p)&. If s i

z(p)
ands j

z(p) indeed are in an allowed state,@ i , j # is inserted at
position p. Otherwise, the operator@0,0# is left unchanged.
This accept/reject step leads to the correct probabilities
selecting among all the allowed diagonal operators@ i , j #.

The off-diagonal update~9b! can be efficiently carried ou
if SL is first partitioned into separate subsequences for e
site i. Subsequencei contains only spin-flipping operator
@ i ,0# and constants@ i ,i #. Their positions inSL are also
stored, to be used for recombining the subsequences afte
update. The constraints on modifications at sitei imposed by
Ising operators@ i , j # or @ j ,i # ~for any j ) can be stored as
flags indicating the presence of one or several of these
erators between neighboring subsequence operators. U
ing a subsequence amounts to selecting two nonconstra
neighboring operators at random from the subsequence,
carrying out substitution~9b! if the two operators are identi
cal. If they are different, they can be permuted. A numb
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proportional to the subsequence length of such pair upd
is carried out for each subsequence, after which they
recombined into a newSL .

The diagonal update~9a! at all positions inSL requires
;L ln(N);bN ln(N)IN(J) operations, where the factor ln(N)
is the scaling of the average number of operations neede
search the cumulative probability table~s! in the case of long-
range interactions. PartitioningSL into subsequences and up
dating all of them according to Eq.~9b! requires on the orde
of L operations. Hence, the number of operations for a
updating cycle of the degrees of freedom of the system~one
Monte Carlo step! scales asbN ln(N)IN(J). This should be
compared to thebN2 scaling in world-line methods@7,19#,
where one power ofN is due to the summation required t
calculate the weight change when flipping a spin interact
with N other spins. Here this summation has been circu
vented by writing the interactions in the SSE formalism
fluctuating constraints that are purely local.

C. Classical cluster update

In the Swendsen-Wang cluster algorithm@11# for the clas-
sical Ising model, i.e., withh50 and a uniform nearest
neighbor interaction of strengthJ, auxiliary bond variables
bi j are introduced in order to construct clusters of spins t
can be flipped independently of each other. Given a s
configuration, and with initially all bond variablesbi j 50,
for every interacting spin pair for whichs is j52J/uJu ~i.e.,
the orientation energetically favored! the bond variable is set
bi j 51, with probability P512e22uJub. When all bonds
have been visited, clusters of spins connected bybi j 51
bonds are formed, and each of these clusters is flipped
probability 1/2. Single spins not connected to anybi j 51
bond are single-spin clusters. After the clusters have b
flipped, all the bond variables are again set to zero and
process is repeated. This scheme can in fact be constru
using the SSE formalism, as an alternative to the Fortu
Kasteleyn mapping@27#, on which the Swendsen-Wang a
gorithm is based.

The relation to the Swendsen-Wang algorithm is shown
follows, by applying the SSE method to the classical Isi
model, now again considering a general form of the inter
tion Ji j and with the bond operatorHi j 5uJi j u2Ji j s i

zs j
z as in

Eq. ~2d!. Since all operatorsHi j commute, the operatore2bH

can be written as a product of operatorsebHi j 511bHi j
1•••. The uniqueness of the power-series expansion t
implies that in the SSE, wheree2bH is expanded directly, the
probability of having one or more operatorsHi j on a bond
i , j when s is j52Ji j /uJi j u is 12e22uJi j ub, i.e., exactly the
probability of having the bond variablebi j 51 in the
Swendsen-Wang scheme. In a configurations is j5Ji j /uJi j u
there can be no operators on the bond in the SSE, and
Swendsen-Wangbi j 51 probability is also zero per construc
tion. One can hence make the connection that one or m
operators acting on a spin pair in the SSE scheme corresp
to a filled bond (bi j 51) in the Swendsen-Wang algorithm
The definition of a cluster is then exactly the same in the t
algorithms. Clearly, such a cluster in the SSE can also alw
be flipped, since the Ising operators only impose constra
1-4
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STOCHASTIC SERIES EXPANSION METHOD FOR . . . PHYSICAL REVIEW E68, 056701 ~2003!
on the relative orientations of connected spins, which
maintained when the cluster is flipped. Since the weight d
not change, the flip should be done with probability 1/2. T
scheme is hence identical to the Swendsen-Wang algori
except that the filled bondsbi j 51 in SSE are generated in
different way, using the diagonal update~9a!. Note that for a
classical model, all the propagated SSE states~8! are identi-
cal, i.e.,s i

z(p)5s i
z(0) for all p50, . . . ,L21, and hence no

state propagations have to be considered as the diagona
date is carried out.

It is interesting to note that the SSE scheme for the c
sical Ising model should in fact be more efficient than t
standard Swendsen-Wang algorithm at high temperatu
This is because the number of operators in the SSE ope
list scales asE(T)/T, whereE(T) is the total internal energy
at temperatureT (E;N) and for largeT the construction of
the clusters based on the operator list should then be fa
than visiting all the bonds, as is done in the Swendsen-W
algorithm. However, in practice the interesting physics
curs when the number of SSE operators per interacting
pair is of the order of 1 or larger, and then there are
advantages of the SSE classical cluster algorithm relativ
Swendsen-Wang.

The classical SSE cluster update can also be used in
presence of the transverse field (h.0). The clusters are de
fined in terms of bonds signifying the presence of one
more Ising operator, as above, without regard for the sin
spin-flipping operatorsHi ,0 and constantsHi ,i . These opera-
tors can be neglected because when a cluster is flipped
spinss i

z belonging to the cluster are implicitly flipped in a
propagated states~8!, i.e., s i

z(p)→2s i
z(p) for all p

50, . . . ,L21 ~this is the reason for the term ‘‘classical clu
ter’’ even whenh.0) and hence all operations with th
single-spin operators remain valid and produce the same
tors in the weight before and after the cluster flips. No
again that only the first state, i.e.,s i

z(0), i 51, . . . ,N, has to
be stored when constructing the classical clusters.

In the case of long-range interactions, a cluster can con
of several intertwined pieces on the lattice, as illustrated
a two-dimensional case in Fig. 2. Regardless of the rang
the interaction, the construction of the clusters, given a S
operator list, can be easily carried out using a number
operations scaling as the number of operators in the list.

Since the classical SSE cluster update is equivalent to
Swendsen-Wang algorithm in the classical limit and o
takes the Ising terms into account also in the quantum cas
cannot be expected to be efficient much beyond the clas
limit h50. For a nonrandom system that undergoes a ph
transition atTc(0) when h50, the critical temperature is
reduced by the transverse field;Tc(h),Tc(0). Hence, the
classical clusters will percolate forT.Tc and this update
will not be efficient close toTc . The primary reason to in
troduce the classical cluster update here was to demons
the relationship between SSE and the Swendsen-Wang a
rithm. In the case of long-range interactions, the scheme
comes very similar to the Luijten-Blo¨te algorithm@1#, again
just differing in the way the bonds are generated.
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D. Quantum-cluster update

The purpose of the quantum-cluster update is to eff
flips of spinss i

z(p) only in a limited number of propagate
statesp, in different states for different sitesi. In other
words, these clusters will be finite and irregularly shap
both in the space and SSE propagation~imaginary-time! di-
rection. In the process, operator substitutionsHi ,i↔Hi ,0
~constant to spin flip, and vice versa! will also be accom-
plished. This update hence replaces the local off-diago
update~9b!.

To discuss the quantum-cluster update, it is useful to
troduce the notion ofvertices@23,24#. Looking at the graphi-
cal representation of a configuration in Fig. 1, it can be no
that the vertical ‘‘lines’’ of same spins between two operato
acting on a given site constitute redundant information. T
full configuration can be represented by a list of positio
~on the lattice! of the operators, and the spin states~on one or
two sites for the model considered here! before and after the
operators act. These relevant spins are calledlegsof the two-
spin vertices~corresponding to constant and spin-flip ope
tors! or four-spin vertices~corresponding to Ising bond op

FIG. 2. Upper panel: Interaction bonds in a configuration fo
2D system with long-range interactions. Lower panel: The clus
constructed from the bonds. Sites with equal symbols belong to
same cluster. Dots indicate spins not acted on by any Ising ope
and constitute single-spin clusters.
1-5
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erators!. All possible vertices for the transverse Ising mod
are shown in Fig. 3. Note that only those Ising vertices t
are compatible with the sign of the interaction between
given pair of spins are allowed for those spins; again, thi
due to the choice of constant in the bond operator~2d!. In the
computer, the vertices are linked to each other by pointers
that from a given vertex leg one can reach the next or p
vious vertex that has a leg on the same site~i.e., there are
links that replace the segments of vertical lines of same s
in Fig. 1!. A detailed discussion of the practical implemen
tion of a linked vertex list has been given in Ref.@24#.

To construct and flip a quantum cluster, one of the legs
one of then vertices is picked at random, and the corr
sponding spin is flipped. Depending on the type of the v
tex, different actions are taken, examples of which are gi
in Fig. 4. The arrow pointing into the vertex indicates t
entrance leg. In the case of an Ising vertex, all the four spi
are flipped and the cluster building process branches
from all the legs, as indicated by the arrows pointing o
from the vertex. Using the pointers of the linked vertex li
the arrows point to legs of other vertices; these become
entrance legs which are put on a stack and subsequently
cessed one by one. If the entrance leg is on a constan
spin-flip vertex, only the entrance spin is flipped. The ver
type then also changes, in terms of operators fromHi ,0 to
Hi ,i , and vice versa. In these cases there is no branching
and no new legs are put on the stack, i.e., this partic
branch of the cluster terminates. If a link points to a spin t
has already been flipped~i.e., two arrows point toward eac
other!, that leg should not be used again as an entrance a
hence not put on the stack. Therefore, each vertex leg ca
visited at most once~each spin can be flipped at most onc!
and the cluster is completed when there are no more entr
legs on the stack. The reason that the cluster can alway
flipped is again that the SSE weight is not affected; the m
trix element of the Ising bond operator is not affected wh

FIG. 3. All the possible four-leg and two-leg vertices.~a! Fer-
romagnetic Ising vertices,~b! antiferromagnetic Ising vertices,~c!
constant vertices, and~d! spin-flip vertices.

FIG. 4. Examples of vertex processes:~a! reversal of a ferro-
magnetic Ising vertex,~b! constant to spin flip, and~c! spin flip to
constant.
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both spins are flipped~in the absence of an external field
the z direction, which would necessitate a modified a
proach!, and the matrix elements for the constant and sp
flip operators are both equal toh.

The construction of a single cluster, which is flipped wi
probability 1, is a quantum-mechanical analog of the clas
cal Wolff algorithm @28#; in the absence of the transvers
field the clusters are identical to those of the Wolff algorith
Note, however, that there is a difference when construc
more than one cluster: The number of operators in the S
operator list and their positions on the lattice do not chan
in the quantum-cluster update. The clusters are there
completely deterministic once the operator list is give
Hence, when constructing several clusters using the s
SSE operator list, it is quite likely that the same cluster
constructed and flipped multiple times. This is clearly n
desirable. However, one can also construct all clusters, a
the Swendsen-Wang scheme, and only flip them with pr
ability 1/2. This is done by always starting a new clus
from a vertex leg which has not yet been visited. Every v
tex leg belongs uniquely to one cluster, and clearly the nu
ber of operations required to complete this update then sc
asL, i.e., typically asbN.

A natural definition of a Monte Carlo step including th
quantum-cluster update is a full sweep of diagonal upda
followed by the construction of the linked list of vertices,
which all clusters are constructed and flipped with proba
ity 1/2. After that, the updated vertex list is mapped back in
a stateua(0)& and an operator sequenceSL . Free spins, i.e.,
those that are not acted on by any operators, can agai
considered as single-spin clusters and should also be flip
with probability 1/2. No local off-diagonal updates~9b! are
needed.

Since the quantum-cluster update explicitly includes
quantum-mechanical features of the configurations~i.e., the
presence of spin-flip operators!, it can be expected to work
well also close to a quantum phase transition (Tc50) driven
by varying h. There are no problems in principle in takin
the T→0 limit, although, as in all finite-T methods, very
large inverse temperaturesb have to be used to converg
large lattices to the ground state~especially in the case o
randomized interactions@29#!.

III. ONE-DIMENSIONAL „1D… INVERSE-SQUARE
FERROMAGNET

As a nontrivial demonstration of the method, a ferroma
netic chain with interactions decaying as 1/r 2 is considered
next. The interaction is summed over alli , j in Eq. ~1!, i.e.,
each pair is counted twice. Periodic boundary conditions
used.Ji j includes both distances in the periodic system, i

Ji j 5Jji 5
J

2 S 1

u i 2 j u2
1

1

~N2u i 2 j u!2D , ~13!

whereJ sets the overall energy scale.
The classical 1/r 2 Ising chain has been the subject of n

merous studies@13–17#. The long-range interaction allow
for a finite-T phase transition even in one dimension. T
1-6
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transition is of an unusual kind, with the correlation leng
exponentn5`, and a discontinuous jump in the magnetiz
tion at Tc . It can be thought of as a one-dimensional ana
of the Kosterlitz-Thouless~KT! transition, with the topologi-
cal excitations being kink solitons@14#. The model is also
important because it can be mapped onto the Kondo prob
@13#.

For smallh/J, one can expect a behavior similar to th
classical case, i.e., a finite-T phase transition to a ferromag
netic state. Forh→` the system becomes disordered, a
there should therefore be a finitehc for which the system
undergoes a quantum phase transition~i.e., Tc50). For h
,hc , Tc.0 and one would then expect the same univers
ity class as in the classical case, since the quantum fluc
tions become irrelevant atTc @18#. Here only a single field
strengthh/J50.5 is considered; the simulations show th
Tc.0 in this case. A more systematic study of theh depen-
dence and the quantum phase transition are left for fu
studies.

The model is invariant with respect to flipping all spin
which means that for any finite system the average magn
zation vanishes. The squared magnetization,

M25K S 1

N (
i

s i
zD 2L , ~14!

is therefore calculated. Results forM2 with statistical errors
in the fifth decimal place can easily be obtained for syste
with several hundred spins~and there are no problems i
going to considerably larger systems!. For small systems the
results are in perfect agreement with exact diagonaliza
data.

A ‘‘tempering’’ scheme, whereb is considered as an ad
ditional discretized dimension of the configuration spa
@30#, was also implemented in the simulations. Transitio
satisfying detailed balance are carried out between neigh
ing b values. This way, results can be obtained on a de
temperature grid with much less effort than by several fix
b simulations. A temperature spacingDT/J50.01–0.02 was
used.

Figure 5~a! shows results for systems withN up to 512.
At high temperatures,M2 decreases with increasingN, as
expected, and there is a slight increase withN at low T. The
curves intersect atT/J'1.4. A discontinuous magnetizatio
jump at Tc in the thermodynamic limit implies thatM2

should become size independent atTc for sufficiently large
N. A notable difference between the finite-size behavior
M (T) seen in Fig. 5 and the magnetization curves for
classical system is that in the latter case the curves do
intersect, but the infinite-size valueM (Tc) is approached
with a logarithmic correction@17#. Figure 5~b! shows in
greater detail the behavior in the region where the cur
intersect. The point of intersection moves slowly towar
higher T as N increases, and largerN would be needed to
determine whether a fixed crossing point is reached asy
totically. Under the assumption that the behavior for the la
est systems reflects the asymptotic behavior, it would
natural to associate the crossing point with the critical te
perature, and then based on the data,Tc /J51.4260.01. This
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can be compared withTc(h50)'1.53J for the classical
model @17#. A reduction of Tc is expected on account o
quantum fluctuations forh.0. The quite small reduction fo
h/J50.5 is consistent with theT→0 magnetization being
only slightly reduced from the classical valueM (0)51.

The reason for the different form of the finite-size scali
for h.0 should be clarified. Recently, a related model with
long-range interaction in the imaginary-time direction~dissi-
pative transverse Ising chain! has been studied@32,31#. Some
results for the quantum phase transition were obtain
which should also be relevant whenTc→0 in the model
considered here~by switching the roles of the spatial an
imaginary-time dimensions!. The crossings observed in Fig
5 could reflect a nonasymptotic behavior related to the qu
tum phase transition, i.e., for some largerL the curves would
cease to cross as the classicalh50 scaling@17# sets in. The
crossing behavior would, if this is the true asymptotic beh
ior, imply that the KT transition of theh50 model is modi-
fied whenh.0. A modified scaling would normally not be
expected@18#, but considering that the classical model wi
interactions decaying as 1/r a has continuously varying expo
nents for 3/2,a,2 and a KT transition only exactly ata

FIG. 5. ~a! Magnetization squared vs temperature for syst
sizes N516 ~dotted curve!, 32, 64, 128, 256, and 512~solid
curves!. The statistical errors are smaller than the width of t
curves.~b! The same quantity on a more detailed scale in the in
section region. The points with barely visible error bars are
simulation results. The curves are third-order polynomial fits.
1-7
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52 @13–17#, the system could potentially be very sensiti
to the modified space-time interactions affected by the tra
verse field.

IV. DISCUSSION

An efficient approach to long-range interacting quant
models has been developed here within the framework
transverse Ising models. It is important to note that the te
nique can also be generalized to other types of systems,
the usual caveat of sign problems@25#. What is particular
about the Ising interaction is that it can be written so tha
spin-spin term either gives zero or a constant when acting
an arbitrary basis state. This is what is needed in orde
reduce the interactions to local constraints in the SSE form
ism. However, the algorithm can easily be modified to ca
where the diagonal interaction can take several nonzero
ues. The first modification is in the diagonal update. For
Ising model, the probability of selecting a given bond~2d! is
given by a matrix element corresponding to the spin p
being in a configuration energetically favored by the inter
tion. If the spins are in a nonfavored configuration~corre-
sponding here to a vanishing matrix element! the update is
simply rejected. In the general case, the probability to us
this update should correspond to the largest diagonal ma
element on a given bond, and if the actual configuration c
responds to a smaller matrix element the update should
accepted only with a probability reflecting this smaller val
~i.e., the ratio between the actual value and the largest ma
element!. The quantum-cluster update can be modified
using ideas developed within the ‘‘directed-loop’’ algorith
@24#. For example, there could be four-particle vertex p
cesses where the whole vertex is not necessarily reverse
in Fig. 4~a!. The process could instead either go straig
through the vertex~modifying the vertex only at the entranc
and exit legs! or ‘‘bounce’’ back without modifying the ver-
tex at all. The details of how this is done in practice will
course depend on the types of diagonal and off-diago
terms in the Hamiltonian. The main point to note is that
the SSE approach all the information needed to update
vertices is contained in the vertices themselves, which
.D

nc
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always local and can be generated in the diagonal up
based purely on local decisions.

The transverse Ising simulation algorithm has here b
tested on a one-dimensional model with long-range inter
tions decaying as 1/r 2. The program requires almost n
modifications for higher-dimensional systems, and rand
interactions are also very easy to implement. The high ac
racy of these simulations demonstrates that the algori
indeed is very efficient. The computer resources used for
work were quite modest; on the order of 200 CPU hours
an SGI Origin2000. The scaling of the CPU time is close
linear in N for the 1/r 2 interaction, for which the interaction
sum ~6! converges rapidly. Only the local updates discuss
in Sec. II B were used in these simulations. The cluster
dates have been tested as well and improve the performa
The quantum-cluster update should be particularly useful
studying the quantum phase transition, where there will b
broad distribution of the sizes of the clusters constructed
this update.

The initial study of 1/r 2 model presented here was prim
rily intended as a demonstration of the algorithm. The res
suggest the possibility of differences between the model w
and without a transverse field and motivate further lar
scale studies.

Future studies will also address how well the meth
works in practice for a variety of other systems that are m
challenging because of frustrated interactions, long-ra
frustrated interactions, or even randomly frustrated lon
range interactions. For short-range interactions, it would a
be interesting to see how the SSE quantum-cluster me
constructed here compares to the transverse Ising clu
method previously developed for continuous-time world-li
simulations@7#.
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